Model Development
Data Science, Data Management Paul Karsten Data Science, Data Management Paul Karsten

Model Development

This blog post outlines the second phase of our Data Science Process: Model Development. Which involves building, training, and evaluating models based on data gathered during Question Formation. The process is iterative, experimenting with different algorithms, features, and parameters in a sandbox environment before scaling to larger datasets. Model performance is evaluated using metrics, validation for overfitting/underfitting, and checks for robustness and interpretability. Finally, models must be versioned, monitored for data drift, and continuously updated to ensure they remain effective and relevant over time.

Read More